Temporally Invariant Junction Tree for Inference in Dynamic Bayesian Network

نویسنده

  • Yang Xiang
چکیده

Dynamic Bayesian networks (DBNs) extend Bayesian networks from static domains to dynamic domains. The only known generic method for exact inference in DBNs is based on dynamic expansion and reduction of active slices. It is effective when the domain evolves relatively slowly, but is reported to be “too expensive” for fast evolving domain where inference is under time pressure. This study explores the stationary feature of problem domains to improve the efficiency of exact inference in DBNs. We propose the construction of a temporally invariant template of a DBN directly supporting exact inference and discuss issues in the construction. This method eliminates the need for the computation associated with dynamic expansion and reduction of the existing method. The method is demonstrated by experimental result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards More E cient Inference in Dynamic Bayesian Networks

The constrained node elimination (CNE) method is a method explicitly designed for exact inference in dynamic Bayesian networks (DBNs). It is suuciently eeective for applications where the dynamic domains evolve relatively slowly, but is reported to be \too expensive" for some fast evolving domain, e.g., the BATmobile, where the inference computation is under time pressure. This research applies...

متن کامل

Exploiting sparsity and sharing in probabilistic sensor data models

Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...

متن کامل

Research on Safety Risk of Dangerous Chemicals Road Transportation Based on Dynamic Fault Tree and Bayesian Network Hybrid Method (TECHNICAL NOTE)

Safety risk study on road transportation of hazardous chemicals is a reliable basis for the government to formulate transportation planning and preparing emergent schemes, but also is an important reference for safety risk managers to carry out dangerous chemicals safety risk managers. Based on the analysis of the transport safety risk of dangerous chemicals at home and abroad, this paper studi...

متن کامل

Incremental Thin Junction Trees for Dynamic Bayesian Networks

We present Incremental Thin Junction Trees, a general framework for approximate inference in static and dynamic Bayesian Networks. This framework incrementally builds junction trees representing probability distributions over a dynamically changing set of variables. Variables and their conditional probability tables can be introduced into the junction tree Υ, they can be summed out of Υ and Υ c...

متن کامل

Parallel Exact Inference

In this paper, we present complete message-passing implementation that shows scalable performance while performing exact inference on arbitrary Bayesian networks. Our work is based on a parallel version of the classical technique of converting a Bayesian network to a junction tree before computing inference. We propose a parallel algorithm for constructing potential tables for a junction tree a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998